CT Elastography: A Pilot Study via a New Endoscopic Tactile Sensor
نویسندگان
چکیده
Objective: To develop a CT elastography imaging system useful for part of the human body in which ultrasound is not capable of reaching. The proposed system would measure CT modality through fusion of the stiffness mapping on the images by the tactile sensor system, improving precision of the endoscopic operation. Methods: We made some liver fibrosis phantoms of bovine skin gelatin with various densities as the target organ of the study. Using the tactile sensor system, which requires no compression during endoscopic operation, stiffness of each phantoms was measured. The resulting stiffness vs density curve was evaluated and translated to the stiffness vs CT number (Houndsfield Unit, HU) curve with a CT number vs density curve obtained by CT scan of the phantoms. A transformation formula can be deduced from these curves to the elasticity via CT number, which was confirmed in vitro with pig liver and in vivo CT scan data. Results: The stiffness and CT modality of each phantom was successfully measured and subjected to constant reduction. The CT value shows a linear relationship with the ROI values of the livers used. Conclusion: This paper reports method of supplementing stiffness information measured by a tactile sensor system, with a CT image for use with an endoscope. It is shown that CT number can be derived with a stiffness sensor and CT data in endoscopic surgery. From there results, we prove the possibility of measuring stiffness with CT and high resolution CT number.
منابع مشابه
Design and Construction of a New Capacitive Tactile Sensor for Measuring Normal Tactile Force
This paper presents the design, construction and testing of a new capacitive tactile sensor for measurement of normal tactile force. The operation of proposed sensor has been investigated in ASTABLE and MONOSTABLE circuits. According to the results of these circuits the deviation of ASTABLE circuit results is less than MONOSTABLE circuit results. In addition, the results obtained from ASTABLE c...
متن کاملDesign and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane
This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...
متن کاملDesign, Modeling, and Construction of a New Tactile Sensor for Measuring Contact-Force
This paper presents the design, modeling, and testing of a flexible tactile sensor and its applications. This sensor is made of polymer materials and can detect the 2D surface texture image and contact-force estimation. The sensing mechanism is based on the novel contact deflection effect of a membrane. We measure the deflection of the membrane with measuring the strain in the membrane with emb...
متن کاملDiagnosis of the extent of gastric cancers by a new endoscopic ultrasonic tactile sensor.
BACKGROUND Because gastrointestinal cancers are generally firm, the presence and extent of a tumor can be assessed by touch during surgery. However, an objective scale for evaluating tissue hardness does not exist. We developed a new instrument, the endoscopic ultrasonic tactile sensor, that allows objective evaluation of hardness. In this study the usefulness of this device for diagnosis of th...
متن کاملA pilot study of transrectal endoscopic ultrasound elastography in inflammatory bowel disease
BACKGROUND Using standard diagnostic algorithms it is not always possible to establish the correct phenotype of inflammatory bowel disease which is essential for therapeutical decisions. Endoscopic ultrasound elastography is a new endoscopic procedure which can differentiate the stiffness of normal and pathological tissue by ultrasound. Therefore, we aimed to investigate the role of transrectal...
متن کامل